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Clonal evolution in hematological malignancies and therapeutic
implications
DA Landau1,2,3,4, SL Carter2, G Getz2,5 and CJ Wu1,6,7

The ability of cancer to evolve and adapt is a principal challenge to therapy in general and to the paradigm of targeted therapy in
particular. This ability is fueled by the co-existence of multiple, genetically heterogeneous subpopulations within the cancer cell
population. Increasing evidence has supported the idea that these subpopulations are selected in a Darwinian fashion, by which
the genetic landscape of the tumor is continuously reshaped. Massively parallel sequencing has enabled a recent surge in our
ability to study this process, adding to previous efforts using cytogenetic methods and targeted sequencing. Altogether, these
studies reveal the complex evolutionary trajectories occurring across individual hematological malignancies. They also suggest that
while clonal evolution may contribute to resistance to therapy, treatment may also hasten the evolutionary process. New insights
into this process challenge us to understand the impact of treatment on clonal evolution and inspire the development of novel
prognostic and therapeutic strategies.
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INTRODUCTION
The past decade has been a remarkable period of progress in the
treatment of cancer in general and hematological malignancies in
particular. Much of this progress has been based on exploiting
knowledge of the genetic vulnerabilities of particular cancers so
that they can be effectively targeted. For example, the impressive
efficacy of tyrosine kinase inhibition (abrogating constitutive Abl
kinase activity) for chronic myelogenous leukemia (CML) has
unequivocally established the paradigm of targeted therapy for
the treatment of malignant disease.1 Likewise, understanding the
role of APML-RARA in acute promyelocytic leukemia has led to a
highly effective regimen with minimal toxicity that overcomes the
effects of this gene fusion and that does not include conventional
chemotherapy.2 Collectively, these examples suggest that the
promise of precision medicine is finally coming to fruition in the
treatment of blood malignancies.

At the same time, this revolution has also taught us important
humbling lessons. Targeted cancer therapy, even when achieving
highly effective responses, typically provides only short-lived
relief. The malignant process often finds alternate routes to
circumvent the roadblocks imposed on it by targeted mono-
therapy.3–5 An instructive example is the case of Philadelphia
chromosome-positive B-cell acute lymphoblastic leukemia (Phþ

B-ALL). The BCR-ABL1 oncogene is critical for the generation of
Phþ B-ALL, as shown by the high frequency of this lesion in ALL,
its adverse prognostic impact,6 and the strong in vitro
transformative capacity of this driver.7 The success of imatinib in
the treatment of CML encouraged clinicians to attempt to inhibit
the BCR-ABL1 oncogene in Phþ B-ALL. Although a high response
rate was observed (70% of patients),8 including in patients with
refractory or relapsed disease,9 the responses were uniformly

short-lived with disease progression occurring within weeks. High
failure rates were also seen with more potent, second-generation,
tyrosine kinase inhibitors such as dasatinib,10 with the emergence
of drug-resistant clones.

Thus, even while the genomic revolution is rapidly expanding
the list of potentially targetable genetic lesions,11 the ability of
cancer to adapt poses significant limitations to the therapeutic
potential of both standard chemotherapy as well as targeted
therapies. As reviewed herein, several lines of evidence lead to an
increasing appreciation of the plasticity of cancer—its ability to
adapt both to host defenses and to therapy—as an additional
facet to consider in the selection and timing of cancer
therapeutics.

CLONAL HETEROGENEITY, THE ENGINE OF CANCER
PLASTICITY
Genetic plasticity is defined as one of the enabling characteristics
of cancer, in which the acquisition of the multiple cancer
hallmarks depends on a succession of alterations in the genomes
of neoplastic cells.12 This plasticity results from ongoing
accumulation of additional somatic mutations that are then
positively selected. Cases of convergent evolution have been
observed in which the same genetic target may sustain several
different somatic mutations within the same tumor, yet affecting
different subclones (for example, the case of deletion BTG1 in
ALL13). These findings strongly suggest that the lesions we detect
at the level of large populations of cancer cells are the products of
an astonishing amount of genetic ‘trial and error’ that occurs in
every cancerous process at the single-cell level. This high degree
of genetic variability provides a ready substrate for an
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evolutionary optimization process, as subclones compete over
resources and adapt to external pressures, such as cancer therapy.
Cancer progression, therefore, is fundamentally a process of
mutational diversification and clonal selection.14

The first experimental evidence supporting the idea that tumors
are composed of heterogeneous subpopulations was obtained
from mouse models of solid malignancies. These experiments
showed that individual subclones possessed different phenotypic
characteristics, including varying metastatic potential.15

Importantly, the link between heterogeneity and resistance to
therapy was apparent even in other early experiments. For
example, cell lines that exhibited a higher degree of phenotypic
heterogeneity also acquired resistance to chemotherapy
(methotrexate) at a higher rate compared with cell lines with
lower phenotypic variability.16

As cancer is a disease that results from the accumulation of
genetic alterations,17 a natural corollary of the above studies is
that phenotypic evolution must stem from underlying genotypic
evolution. This concept has been indeed confirmed over the past
several decades with increasing technological sophistication,
using approaches based on cytogenetics18,19 and Sanger
sequencing20 (‘first-generation sequencing’). Mullighan et al.,11

for example, in an elegant single-nucleotide polymorphism array
analyses of pediatric pre-B cell ALL, demonstrated complex
branched evolutionary growth associated with disease relapse.
This landmark study further showed how relapsed disease is
genetically altered compared with disease at diagnosis. In chronic
lymphocytic leukemia (CLL), clonal evolution was identified in up
to 43% of patients using fluorescent in situ hybridization or
cytogenetic techniques, with frequent acquisition of the poor
prognostic markers del(11q) and del(17p),21 and occurring at a
higher rate in the poor prognosis group of IGHV unmutated
cases.22

Together, these experimental observations have demon-
strated that the genetic makeup of hematological malignancies
is constantly reshaped during disease progression. Overall,
they support the prescient ideas theorized by Nowell,23 who
postulated that genetic instability would be expected to lead
to enhanced heterogeneity with cancer progression, resulting
in diverse, genetically distinct, subpopulations within a
neoplasm.24 Thus, the selection process would be expected
to promote the outgrowth of increasingly fit subclones,
thereby continuously remodeling the fitness of the overall
population.

If cancer plasticity is driven by clonal heterogeneity, it is
important to consider the features that fuel the generation of
clonal heterogeneity.12 Genetic instability undoubtedly has a key
role in this process. The rate of acquisition of novel somatic
mutations is probably closely tied to the diversification of the
cancer population and therefore for enhancing its evolutionary
potential, together with other features, such as the population
size25 (comprehensively reviewed elsewhere26). A permissive
genetic context that either inhibits DNA repair (for example,
BRCA mutations) or increases tolerance to novel mutations by
removing critical checkpoints (for example, TP53 or ATM
mutations, enabling tolerance towards massive genomic
damage27)28 is likely to increase the overall diversity of the
tumor population. Adding to the complexity, different areas of
the genome may have different rates of mutations
acquisition,29,30 which would need to be taken into account
when inferring past rates of mutations from genomic
information. A potentially provocative notion that arises from
these data is whether genetic instability may be targeted as a
measure to inhibit cancer evolution. For example, for
hematological malignancies, the documented ongoing31

mutagenic32 activity of enzymes responsible for B-and
T-cell receptor genetic modifications may be of particular
interest.

UNRAVELING CLONAL COMPLEXITY WITH MASSIVELY
PARALLEL SEQUENCING (MPS)
Although confirming the basic tenet of cancer as an evolutionary
disease, the above described studies are inherently limited in
their ability to decipher the true extent of genomic hetero-
geneity, given the limited amount of genetic lesions studied at
any experiment and the limited sensitivity of experimental
techniques that were then available to detect smaller subclones.
Both of these limitations have been largely overcome with the
advent of MPS. MPS of tumors has afforded an exponential
increase in the ability to characterize the genetic landscape of
cancer.33 It has revealed a very high degree of intertumoral
heterogeneity (that is, different genetic lesion affecting different
tumors), with hundreds of different mutations affecting different
tumors with a probable effect on fitness.34,35 Moreover, this
technology has also revealed a high level of intratumoral genetic
heterogeneity (that is, different genetic lesions affecting different
subclones within an individual tumor), which also affects
putative driver events.36 In particular, the advent of MPS has
allowed researchers to identify both subclonal somatic copy
number alterations (SCNA) and subclonal somatic single-
nucleotide variations (SSNV),37,38 which can be tracked over
time to study tumor evolution.39,40 This ability to reconstruct the
clonal structure is derived from an inherent property of MPS.
It involves generating billions of independent sequencing reads,
each derived from a single DNA molecule.33 Thus, MPS data
represent an informative random sample of individual DNA
molecules contained within a tumor. At SSNV sites, the number
of sequencing reads supporting the alternate and reference
bases can be used to calculate a quantitative measurement of
the variant allelic fraction (VAF).

In samples derived from diploid cancers such as acute myeloid
leukemia (AML) that essentially lack SCNAs and are not
contaminated with non-malignant cells, allelic fractions can be
used to estimate SSNV clonality directly (in which any clonal SSNV
should have a VAF of 0.5; while SSNVs in subclones will have lower
VAFs). However, the vast majority of human cancers contain
frequent SCNAs,41 with many of them having undergone whole
genome doubling during their evolution.37 In addition, most
tumor specimens contain a substantial fraction of normal cells.37

Thus, in order to accurately infer the fraction of tumor cells that
contain an SSNV from MPS data, it is necessary to account for both
the copy number at the SSNV site and the overall tumor purity in
the sample.

Recently, inference methods have been developed which
attempt to account for these factors in order to estimate the
actual cancer cell fraction harboring a specific mutation38,42

(Figure 1). Although moderate sequencing depth may result in
considerable uncertainty in the cancer cell fraction estimates of
individual mutations, the fact that subclonal mutations are
expected to co-occur in discrete subclonal cell populations has
formed the basis of using clustering techniques to better resolve
the subclonal structure of bulk tumor samples.38,42

Because DNA from all cells present in the bulk sample is mixed
together before sequencing, information regarding which muta-
tions co-occur in specific subclones is not readily accessible from
analysis of a single sample. In general, analysis of bulk DNA from a
single cancer sample cannot rule out the possibility that all
subclones are nested inside one another in a linear phylogeny.
One exception to this was reported in a study that applied deep
whole genome sequencing (188X) of a single primary breast
cancer sample and could infer branched evolution based on co-
occurrence of informative alleles on sequencing reads.38 Although
this approach represents an elegant solution to the phylogenetic
inference problem, the deep coverage needed over the whole
genome renders it impractical for large studies using existing
technology. We note that sequencing platforms capable of reliably
producing longer reads will make this approach far more powerful.
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An attractive approach to inferring phylogenetic structures from
analysis of bulk tumor DNA is to sequence multiple specimens
from the same individual’s cancer. Branched evolutionary relation-
ships can be detected as clusters in which one subclone may
increase in frequency while another sibling subclone may exhibit a
concomitant decrease in frequency. This approach has been used
to identify branched evolution in leukemia samples taken before
and after treatment39,40 as well as in solid tumors sampled at
multiple anatomical locations.36

THE SURPRISING ASPECTS OF CLONAL COMPLEXITY OF
HEMATOLOGICAL MALIGNANCIES
One of the first key lessons gleaned from genome-wide studies of
hematological cancers is that clonal evolution which follows a
complex branched path (where multiple subpopulation co-exist in
the same tumor and compete for ascendency) is at least as
common as a more linear trajectory (in which progeny clones
replace parent clones in full selective sweeps). A traditional linear
model of successive clonal expansions43,44 could have been
expected of hematological malignancies, by virtue of the mobile
nature of their cellular normal counterparts (compared with solid
tissues that are often embedded in fixed tissue architecture). In
theory, this feature could theoretically have led to a decreased
level of clonal complexity as cancer cells can readily move across
tissues and hence undergo more homogenous cellular mixing.
This scenario is unlike solid tumor malignancies, in which the
spatial compartments are formed. To the contrary, however, whole
genome/exome investigation of clonal evolution in AML,39,45

myelodysplastic syndrome,46 multiple myeloma47,48 and CLL40

have all consistently demonstrated not only a high degree of
clonal heterogeneity and marked changes in the genetic makeup
of the disease upon relapse but also branching rather than linear
as the predominant pattern of evolution (Table 1). A major
implication of these findings is that the evolutionary process is
expected to result from complex interactions among multiple
highly diverse populations rather than a clear succession of
selective sweeps. Clonal competition among co-existing sub-
populations that harbor driver lesions49 thus shapes the eventual
composition of the tumor such that multiple clonal variants are
present at the same time.50,51

It is important to note that the published analyses to date have
been limited to the detection of macroscopic clonal heterogeneity
(clone size 41–10% of the entire cell population). This is because

only clones that either represent a substantial proportion of the
cancer cell mass or clones that become dominant at some
point during the studied period are trackable using current
methodologies. Emerging technologies capable of achieving
deeper sequencing depth of bulk DNA52,53 or single-cell
genomic sequencing methods54 may enable the study of
smaller subpopulations. Delineating the full extent of cancer
heterogeneity down to the single-cell level will enable us to
understand how the seemingly stochastic process of ‘trial and
error’ at the single-cell level is integrated through selection to
shape the genetic makeup of the tumor. It carries the potential to
refine the dichotomy of driver vs passenger mutations, by
quantifying the fitness contribution of each individual mutation
to selection (manifested in varying clone sizes).

EPIGENETIC CLONAL HETEROGENEITY
Although genetic alteration has been the main focus of
evolutionary dynamics in cancer thus far, epigenetic modifications
are probably responsible for a large part of phenotypic
differences55 that ultimately affect fitness. Similar to genetic
alterations, epigenetic modifications are heritable and therefore
subject to natural selection. The contribution of epigenetic
modification to selection in cancer is probably substantial, as
epigenetic alterations accumulate as the cell population evolves
and diversifies at rates estimated to be orders of magnitude
higher compared with somatic genetic alterations.56 Indeed, a
large degree of intratumor epigenetic heterogeneity was recently
described in lymphoma using DNA methylation arrays.57

Genetic and epigenetic changes probably have complex
bidirectional interactions and co-operate to mold the evolutionary
landscape. This complex and bidirectional interplay between
genetic and epigenetic features in cancer has been perhaps most
deeply explored in the area of cancer stem cells. Specifically, early
xenograft studies of ALL revealed leukemic repopulation that
recapitulated the genetic heterogeneity of the patients’ original
leukemia.58,59 Similar findings were also demonstrated in solid
tumor malignancies.60 Anderson et al.58 concluded that cancer
stem cells—an epigenetically uniform population—are genetically
diverse. On the other hand, even genetically uniform cell
subpopulations have been reported to reveal profound
epigenetic differences leading to differences in the phenotypes
of survival capacity and pluripotency potential.61,62

Figure 1. Inferring the size of a subpopulation affected by somatic mutations from genomic data. MPS provides an estimate of VAF, which is
calculated by counting the number of reads with the variant alleles and dividing it by the total number of reading from the specific location.
The certainty of the estimate is a function of the depth of coverage, using the Beta distribution (a). Subsequently, the VAF estimates are
integrated with the purity and local copy number information (b) to yield cancer cell fractions (c). In the example provided, a somatic
mutation with a VAF of 0.125, a local copy number of 3 and a purity of 67% yields cancer cell fraction estimates of 0.5.
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Together, these observations prompt a model of cancer
evolution in which epigenetic and genetic heterogeneity are
integrated, thereby accounting for epigenetic heterogeneity of
genetically uniform populations and genetic heterogeneity of
epigenetically uniform populations. Such a model would desig-
nate cells with high self-renewal capacity (an attribute encoded in
the epigenetic state) as the crucial units subjected to selection
forces in genetic evolution. Hence, the appearance of a new
somatic mutation within these specialized cells could lead to their
clonal propagation. At the same time, such a model would also
acknowledge the existence of a far less homogenous cancer stem
cell population then previously considered with regard to various
features, including drug sensitivity.63

It is important to consider that in cancer the movement
between different epigenetic states (along the spectrum of
pluripotency to differentiation, for example) may be altered as
well. In multicellular organisms, epigenetic transitions are tightly
controlled through numerous regulatory mechanisms.64

Neoplastic transformation can unhinge those mechanisms,
reverting to a state more closely resembling unicellular
organisms,65 in which the fluid movement across diverse states
can achieve high adaptivity by ‘trial and error.’ Epigenetic
heterogeneity, thus, can be a hedging strategy for enhanced
survival.65 Cancer progression, therefore, may be viewed as a
scenario in which both genetic and epigenetic population
structures become increasingly malleable, such that the lines
between populations with different ‘stemness’ potential become
more blurred. Within this framework, ‘stemness’ may exist as a
functional phenotype, which can be manifested by any member
of a malignant population given the appropriate endogenous and
exogenous factors.66 Thus, a high degree of interclonal
competition would probably select for cells with the highest
self-renewing capacity at the expense of more differentiated cells,
as has been demonstrated in CML.67 Therapy may also accelerate
this process by providing a strong selection for cancer stem cell
survival and proliferation.67,68 Acquired genetic alterations
probably have an important role in this scenario as well. For
example, the loss of TP53, often seen with disease progression,21

provokes stem-cell-like transcriptional programs.69,70 Other
oncogenes may also afford leukemogenic potential to
committed myeloid progenitors, again demonstrating that
genetic lesions may enlarge the available pool of cells with
stem-like features.71

In summary, integrating the stem cell hierarchy and the genetic
phylogenetic tree yields a complex evolutionary picture that has
only begun to be unraveled. In concert with genetic diversification
and fitness optimization, a similar process very likely occurs

at the epigenetic level. Cancer stem cells constitute a growing
proportion within the cancer cell mass72,73 and have a greater
plasticity in terms of bidirectional conversion from stem cells to
more differentiated cells. Together, this leads to enhancement of
the cellular substrate available for selection, with large, treatment-
resistant and genetically heterogeneous cancer stem cell
population.

HOW DOES CLONAL EVOLUTION CONTRIBUTE TO RESISTANCE
TO THERAPY?
Relapsed malignancy shows an almost universal phenotypic
evolution, resulting in a more aggressive and treatment-refractory
phenotype.74 We and the others have shown that frequent
genetic evolution underlies the phenotypic evolution.11,40

Therefore, a central question in cancer treatment is what is the
precise nature of the interaction of clonal evolution with cancer
therapy. Initial studies highlighted the potential role of
chemotherapy to induce novel mutagenesis75 and thereby to
enhance the process of genetic diversification (Figure 2a).
Although studies of WGS (whole gemone sequencing) are
inherently limited by the power to detect minute subclones
within a sample, studies in acute myeloid malignancies have
nonetheless suggested that the novel mutagenesis may result
from the genotoxic effects of chemotherapy, supported also by a
changing spectrum of somatic single-nucleotide alterations.39,76 In
contrast, in case of indolent blood malignancies such as CLL,
evidence for the contribution of the chemotherapy’s
mutagenizing effect is limited. Previous purine analog-based
therapy was not associated with an increased total number of
mutations in CLL77 and also was not associated with an altered
mutational pattern.40 Therefore, although chemotherapy-induced
mutagenesis has the potential to contribute to further clonal
diversification, other sources for generating evolutionary shifts
appear to be at play, and probably involve pre-existing genetic
variants or subclones.78

How then does therapy induce evolution from pre-treatment
genetic variation? Two explanations are considered, depending on
the tumor kinetics, the efficacy of cell kill with treatment and other
factors related to both the tumor type and the specific treatment
strategy. The first is that resistant clones may be actively selected
by therapy (Figure 2b). Examples for this model are numerous,79–81

including MSH6 mismatch repair gene mutations in recurrent
glioblastoma multiforme after treatment with temozolomide82,83

and the BCR-ABL T315I mutations in CML.84,85 Indeed, this model
of clonal evolution induced by the selective pressure of therapy
maybe particularly relevant in the context of targeted therapy, as

Table 1. Next-generation sequencing studies of clonal evolution in hematological malignancies

Disease Methodology Number of cases Insights

AML39 WGS, followed by targeted
deep sequencing

8 Relapse after chemotherapy is associated with clonal
evolution and acquisition of new mutations

Secondary AML46 WGS, followed by targeted
deep sequencing

7 Secondary AML clones are often evolved progeny
of MDS clones

Multiple myeloma47 WES 1 Clonal shifts occur along the history of the disease
Multiple myeloma118 WES 1 Clonal shifts occur along the history of the disease
CLL76 WGS, followed by targeted

deep sequencing
3 Different patterns of evolution evident through cycles

of therapy
CLL40 WES 149 (18 longitudinal

samples)
Subclonal drivers can anticipate clonal evolution and
impact outcome

Essential
thrombocytosis115

Single-cell WES 1 ET is monoclonal in origin

Follicular
lymphoma119

WES 8 Early and late drivers identified

Abbreviations: AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; ET, essential thrombocytosis; WES, whole exome sequencing; WGS, whole
gemone sequencing.
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the therapy is often directed at a particular genetic context which
may not be shared by all subclones. This relationship between
therapy and genetic adaptation is likely to result in convergent
evolution, in which a mutation that confers resistance will become
highly prevalent in relapsed disease. Indeed, this process has been
reported in relapsed T-cell ALL after treatment with nucleoside-
analog chemotherapy drugs.86

An alternative process contributing to the emergence of
continuously more aggressive clones may be entirely independent
of differential sensitivity to therapy (Figure 2c). We recently
observed a higher number of large subclones (410% of cancer
cells) in 149 CLL cases that were exposed to treatment before
sampling compared with patients who received therapy after the
sample was obtained. This finding of increased clonal diversity
with treatment held true even after accounting for potential
confounders, such as longer follow-up time.40 We interpret this
observation to result, at least in part, from the outgrowth of many

diverse pre-existing minor but fit subclones.76,87 This latter
interpretation is further supported by our observation of an
increased frequency of subclonal-driver events (presumably fitter)
in treated relative to untreated patients. Overall, our data support
the idea that CLL therapy, by markedly reducing disease bulk, may
act as a classic evolutionary restriction point and reset interclonal
dynamics.88

Within this conceptual framework, when subclones with high
fitness already exist within a tumor population, treatment could
favor the development of more aggressive clones, potentially
reducing post-relapse survival.40 In this context, cytotoxic therapy
would effectively remove the incumbent clone89—acting like a
‘mass extinction’ event89—and thereby shift the evolutionary
landscape90,91 in favor of one or more aggressive subclones.92

Thus, highly fit subclones probably benefit from treatment and
exhibit rapid outgrowth.78 These data provide mechanistic
support to the observation that the ‘watch and wait’ strategy for

Figure 2. Three models of how cancer therapy may accelerate clonal evolution. First, cancer therapy, particularly containing genotoxic agents,
can induce novel mutagenesis (a). Second, therapy can accelerate clonal evolution by selecting a clone (here illustrated in red) containing a
mutation that confers resistance to the therapeutic agent used (b). The resistance of the selected clone is reflected in the depiction of the cell
population after cytoreduction, composed almost entirely of the resistant clone (in red). A third model postulates similar sensitivity to
treatment of the different subpopulations, reflected in similar proportions before and after cytoreduction (c). The clearing niche alters the
dynamic evolutionary landscape allowing a faster rise of a fitter clone.
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CLL leads to superior clinical results,93 as the earlier administration
of chemotherapy may accelerate clonal evolution and the
emergence of fitter clones with more aggressive disease
phenotypes. This form of relationship between therapy and
evolution maybe particularly important to CLL, as this cancer type
is highly dependent on growth and survival signals provided by
the local microenvironment.94 This dependency may augment
the importance of the role of interclonal competition in the
evolutionary dynamics of CLL. Future in-depth studies would assist
in confirming this model as well as whether it is generalizable to
malignancies other than CLL, and in particular in other more
indolent cancers.

TRANSLATING CLONAL EVOLUTION TO THE CLINIC
A major priority of precision cancer genomics is to use information
on genetic lesions to define patient prognosis. In an illustrative
example, Patel et al. could demonstrate that lesions such as
internal tandem duplication of FLT3 (FLT3-ITD), partial tandem
duplication in MLL (MLL-PTD), as well as mutations in ASXL1 and
PHF6 associated with reduced overall survival in AML, while CEBPA
and IDH2 mutations associated with improved overall survival.
These associations were independent of established risk factors.95

Similar efforts have been carried out in other hematological
malignancies, including CLL,77,96,97 and multiple myeloma.98

Across the blood malignancies, patients with apparently poor
prognostic markers can nonetheless exhibit good survival, and vice
versa.88 The several studies reviewed above (Table 1) suggest that
intratumoral clonal heterogeneity may be an important contributor
to this complex picture. In aggregate, studies of clonal evolution have
revealed cancers to be genetically heterogeneous in space and
time.99 Hence, simply labeling an individual cancer as harboring a
genetic lesion or not is not fully precise. From a practical standpoint,
for a solid tumor mass, or even leukemia cells that are present in
different tissue compartments (that is, blood vs marrow vs lymph
node), multiple samplings may be required to correctly assert the
genetic landscape of an individual case (Figure 3).

Finally, clonal heterogeneity in and of itself may impact clinical
outcome. Our studies have shown that the presence of a strong
subclonal-driver event, but not a clonal driver, negatively impacts
clinical outcome in CLL.40 The link between clonal heterogeneity
and specifically the presence of a subclonal driver to adverse
clinical outcome adds an additional dimension to the current
efforts of linking discrete somatic mutations to outcome. In other
words, it is not only the presence or absence of a mutation that
should be considered but also the size of the subpopulation it
affects.

From the therapeutic standpoint, studies of cancer genomics
highlight the concept that cancer is not a single disease entity but
rather a collection of related disorders; hence, treatment should
be targeted to the molecular subtype of disease. For example,
high-dose daunorubicin, as compared with standard-dose dau-
norubicin, improves the rate of survival among patients with

DNMT3A, NPM1 mutations or MLL translocations in AML but not
among patients with wild-type DNMT3A, NPM1, and MLL.95 The
potential to integrate the available high-throughput sequencing
technologies (for example, DNA-seq, RNA-seq and ChIP-seq) to
provide a patient-specific genomic-epigenomic map may provide
crucial prognostic perspective and inform therapeutic choices.100

Furthermore, targeted treatments that are based on the presence
of specific molecular lesions may greatly improve therapeutic
response, as seen in, for example, FIP1L1-PDGFRA eosinophilia-
associated myeloproliferative disorders.101 These ‘actionable
mutations’ where a clinician matches a tumor mutation to a
cancer drug may either be missed given genetic heterogeneity in
time and space, or alternatively might involve only a small
subclone, which begs the question of the clinical efficacy were it
to be solely targeted. For instance, synthetic lethal approaches
were found to be highly effective in situations in which all cancer
cells contain the targeted variation, as witnessed by the potent
efficacy of PARP (poly ADP-ribose polymerase) inhibition in tumors
of BRCA germline carriers.102

These observations together raises the provocative question of
whether it is preferable to target genetic variations that are found
in the ‘trunk’ compared with those found in ‘branches’ of the
evolutionary phylogenetic tree.99 Intuitively, the former may be
considered the superior approach. ‘Trunk’ events, by definition,
are mutations present in all the cells of the malignant process.
Targeting of this event in theory carries the potential of a
complete extinction of the entire population of malignant cells.
Conversely, it is unclear whether the cell remains dependent on
the specific ‘trunk’ target after acquiring additional oncogenic
events (a ‘branch’ target), and therefore, how well they will be
impacted by therapy directed against these founder targets. In
solid malignancies, such as non-small cell lung cancer, KRAS and
EGFR mutations are rarely detected together; however, when they
co-occur, targeting the ‘trunk’-type mutation (that is, EGFR) is no
longer effective.103 Similarly, BRAF canonical mutations are
discovered in benign colonic polyps and are therefore probably
to be earlier, ‘trunk’-type events. However, the response to BRAF
targeting has been disappointing.104 One may hypothesize that at
least in more indolent malignancies, targeting ‘branch’ mutations
(‘pruning’) may be an effective strategy, which could promote
clonal equilibrium and hinder the selection of more aggressive
phenotypes.

The differential effects of targeting ‘branch’ vs ‘trunk’ lesions
may be determined, in part, by the complex epistatic relationship
between different genetic lesions within the same clonal
population. As new mutations do not occur in isolation but rather
enter into an established genomic landscape, the existing gene
network may have a profound effect on the fate of the cell and
determine whether the novel mutation will result in cell death or
clonal expansion. For example, activation of many oncogenes
together, including KRAS, can lead to a state of ‘oncogene-induced
senescence’.105 A similar relationship has been demonstrated
for c-MYC-induced apoptosis that is relieved in the context

Figure 3. Translating clonal heterogeneity insights to the clinic. Possible prognostic and therapeutic implications of clonal heterogeneity are
outlined. Image courtesy Broad Institute/Lauren Solomon; hourglass photo iStockphoto/Dominik Pabis.
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of BCL-2 overexpression.106 Hence, further study of the epistatic
relationships in model systems as well as in clinical trials will help
clarify in what context optimal effects will result from targeting
the ‘trunk’ event and when it is preferable to target the ‘branches’.

The broader evolutionary perspective allows us to view cancer
as an ecology of different subpopulations in the context of
their environment.87 Intriguing data suggest that, at least in
some cases, complex co-dependency relationships between
subpopulations may exist,107 in addition to competition.
The understanding that disease is composed of diverse
subpopulations is a challenge to our traditional schemes of
clinical trials. A future in which both trunk and branch events are
characterized, and in which no two cancers share the same
genomic features, may be envisaged.108 In this setting, performing
large-scale clinical trials using present-day methodologies, in
particular utilizing combinations of targeted agents, may prove
highly challenging. The disease can no longer be defined as a
single entity containing a uniform set of genetic abnormalities.
Furthermore, the degree of genetic heterogeneity of a tumor is
likely to be an important determinant of therapeutic
outcome.92,109

A better understanding is needed of the impact of therapy on
the evolutionary landscape, possibly through the use of the more
applicable whole-exome sequencing technologies to study large
cohorts on patients.37 Researchers may consider incorporating
approaches such as WES (whole exome sequencing) that identify
at least larger subpopulations (41–10% of cancer mass) and
characterize their evolution in ancillary studies of prospective
clinical trials. Such information may inform us regarding the
adaptive processes responsible for treatment failure as well as
eventually spark the development of novel therapeutic paradigms.
For one, it has been proposed that alternative approaches could
potentially maintain interclonal equilibrium at the expense of
trying to maximize cell kill.110 This approach supports preventing
the elimination of therapy-sensitive clones, as they (theoretically)
could continue to suppress the growth of therapy-resistant clones
in a competitive manner and thereby maintain an equilibrium
state. A second approach that requires further consideration is the
idea of limiting the underlying diversification that serves as the
substrate for clonal evolution before the full expression of the
genetic or the epigenetic heterogeneity in cancer is evident.
Finally, the therapeutic challenge posed by a continuously
adapting and reshaping malignant process provides strong
rationale to support the pursuit of immunity-based therapies, as
this approach may effectively pit one complex adaptive process
against another. There is already limited evidence that allogeneic
hematopoietic stem cell transplant (a non-specific example of a
immunity-based therapy) imposes evolutionary pressures on
the tumor that are distinct from other therapeutic modalities
(leading, for example, to loss of donor–recipient mismatched HLA
alleles111,112 or multiple cytogenetic abnormalities113). These
alterations demonstrate that the leukemic cell population is
being molded by a powerful immune response and hence to
the efficacy of the immunity-based therapy. The process of
co-evolution of the cancer cells and the immune response in the
setting of effective immunotherapy is an area of great interest for
future study.

CONCLUSIONS AND FUTURE DIRECTIONS
Understanding the evolutionary capacity of cancer is emerging as
a key element in developing improved therapeutic strategies in
the era of precision medicine, as it presents one of the most
formidable obstacles to the successful application of targeted
therapy.

As aforementioned, the intensive application of high-
throughput genomic platforms has enabled rapid progress in
our understanding of the process of clonal evolution in

hematological malignancies. Collectively, these studies have
provided several core insights, including: first, that clonal
heterogeneity is common in malignancy both at the genetic
and the epigenetic level; second, that clonal evolution is
frequently observed in relation to therapy, leading to emer-
gence of more aggressive and resistant disease; and finally, that
the process of clonal evolution is linked to adverse clinical
outcomes.

Although these recent studies point to the key role played by
clonal evolution in cancer progression, current perspectives of
cancer as an evolutionary problem are fairly limited. Even as
knowledge about germline and acquired genetic lesions asso-
ciated with cancers has grown exponentially, we still know only
little about the background rate of heterogeneity—which is the
substrate of evolution—and possess only a rudimentary under-
standing of how the epigenetic program affects this substrate. In
this respect, developing methodologies to integrate data from
complementary—genetic and epigenetic—high-throughput plat-
forms is key, both at the cell population and at the single-cell level.
Moreover, the dynamics of interactions between clones—whether
they compete or co-depend on each other—has not been
elucidated. Additionally, the examination of key mechanistic
question relating to clonal evolution using genomic tools (for
example, different types of selective pressure, interaction with
microenvironment niches and interactions between multiple
genetic lesions within the same cell) has yet to be accomplished.
Thus, the ability to foresee the evolutionary trajectory of any
individual cancer is presently still in its infancy. Improving this
capacity to predict how cancer will evolve with treatment carries a
significant potential to allow us to anticipate and tailor treatment
to the probable future trajectory (so-called ‘anticipation-based
chemotherapy’).114

Ongoing technological developments are now generating
tools ideally suited for the study of these questions. Recently,
proof-of-principle studies of single-cell sequencing have been
conducted that have catalogued the point mutations in
protein-coding regions.115,116 In the not too distant future,
single-cell sequencing will allow the detailed study of genetic
heterogeneity that provide the backdrop against which
evolution at the subpopulation level occurs. The application of
single-cell RNA-seq117 to the study of hematological
malignancies would enable the study of the heterogeneous
transcriptional changes and signaling networks that stem from
heterogeneous somatic genetic alterations. In addition to single-
cell examination, novel methodologies are capable of
deconvoluting subpopulations from bulk material37 and may
be helpful in delineating the basic underlying principles of
evolution in in vivo and in vitro models, with deeper sequencing
providing both higher sensitivity for smaller subclones as well as
more precise estimates of their size. The ability to use WES as an
alternative approach to WGS,40 as well as the projected
downtrend of sequencing costs, will enable multi-sampling in
time and space of hematological malignancies, clarifying the
nature of spatial heterogeneity in blood malignancies as well as
questions regarding the nature repopulation of the ecological
niche upon relapse. It may also allow the study of these
questions in large clinical trials. These efforts can potentially
answer questions of fundamental importance to the clinical
application of these insights, namely what is the prognostic
significance of the size of the subclone that harbors a
genetic marker, when should we target branch or trunk
lesions and how to integrate this knowledge in combinatorial
therapies.
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