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Mutations driving CLL and their
evolution in progression and relapse
Dan A. Landau1,2,3,4*, Eugen Tausch5*, Amaro N. Taylor-Weiner1*, Chip Stewart1, Johannes G. Reiter1,2,6,7, Jasmin Bahlo8,
Sandra Kluth8, Ivana Bozic7,9, Mike Lawrence1, Sebastian Böttcher10, Scott L. Carter1,11, Kristian Cibulskis1, Daniel Mertens5,12,
Carrie L. Sougnez1, Mara Rosenberg1, Julian M. Hess1, Jennifer Edelmann5, Sabrina Kless5, Michael Kneba10, Matthias Ritgen10,
Anna Fink8, Kirsten Fischer8, Stacey Gabriel1, Eric S. Lander1, Martin A. Nowak7,9,13, Hartmut Döhner5, Michael Hallek8,141,
Donna Neuberg151, Gad Getz1,161, Stephan Stilgenbauer51 & Catherine J. Wu1,2,3,41

Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central
questions in cancer biology. Here we identify 44 recurrently mutated genes and 11 recurrent somatic copy number
variations through whole-exome sequencing of 538 chronic lymphocytic leukaemia (CLL) and matched germline DNA
samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized putative
cancer drivers (RPS15, IKZF3), and collectively identify RNA processing and export, MYC activity, and MAPK signalling
as central pathways involved in CLL. Clonality analysis of this large data set further enabled reconstruction of temporal
relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59
patients demonstrated highly frequent clonal evolution. Thus, large sequencing data sets of clinically informative
samples enable the discovery of novel genes associated with cancer, the network of relationships between the driver
events, and their impact on disease relapse and clinical outcome.

In recent years, unbiased massively parallel sequencing of whole
exomes (WES) in chronic lymphocytic leukaemia (CLL) has yielded
fresh insights into the genetic basis of this disease1–4. Two important
constraints have limited previous WES analyses. First, cohort size is
critical for statistical inference of cancer drivers5, and previous CLL
WES series3 had a power of only 68%, 23% and 7% to detect putative
CLL genes mutated in 5%, 3% and 2% of patients, respectively (http://
www.tumorportal.org/power)5. Limited cohort size has also curtailed
the ability to effectively learn the relationships between CLL driver
events, such as their co-occurrence and the temporal order of their
acquisition. Second, the composition of the cohort of previous WES
studies has limited the ability to accurately determine the impact of
drivers and clonal heterogeneity on clinical outcome, since they
included samples collected at variable times from subjects exposed
to a variety of therapies.

To overcome these challenges, we analysed WES data from 538
CLLs, including 278 pre-treatment samples collected from subjects
enrolled on the phase III CLL8 study6. This trial established the com-
bination of fludarabine (F), cyclophosphamide (C) and rituximab (R)
as the current standard-of-care first-line treatment for patients of
good physical fitness, with a median of .6 years of follow-up. Here
we report the discovery of novel genes associated with CLL, the com-
prehensive genetic characterization of samples from patients before
exposure to a uniform and contemporary treatment, and the unco-
vering of features contributing to relapse from this therapy.

Unbiased candidate CLL gene discovery
We performed WES of CLL and matched germline samples, collected
from 278 subjects enrolled on the CLL8 trial, with mean read depth
of 95.0 and 95.7, respectively (Supplementary Tables 1 and 2).
Consistent with previous CLL WES studies, we detected a mean 6 s.d.
rate of 21.5 6 7.9 silent and non-silent single nucleotide variants
(sSNVs) and somatic insertions and deletions (sIndels) per exome
(Supplementary Tables 2 and 3)1,3.

We inferred candidate cancer-associated genes in CLL through
implementation of MutSig2CV5,7. To maximize statistical sensitivity
for driver detection5, we combined the CLL8 cohort with two prev-
iously reported and non-overlapping WES cohorts1,3, thereby increas-
ing the size of the cohort to 538 CLLs. This cohort size is expected to
saturate candidate CLL gene discovery for genes mutated in 5% of
patients, and provides 94% and 61% power to detect genes mutated
in 3% and 2% of patients, respectively5.

We detected 44 putative CLL driver genes, including 18 CLL
mutated drivers that we previously identified3, as well as 26 additional
putative CLL genes (Figs 1 and 2 and Extended Data Figs 1 and 2). In
total, 33.5% of CLLs harboured a mutation in at least one of these 26
additional genes. Targeted DNA sequencing as well as variant allele
expression by RNA-seq demonstrated high rates of orthogonal valid-
ation (Extended Data Fig. 3).

Of the newly identified putative cancer-associated genes, some
were previously suggested as CLL drivers in studies using other
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detection platforms. For example, the suppressor of MYC MGA
(n 5 17, 3.2%), which we detected as recurrently inactivated by inser-
tions and nonsense mutations, was previously found to be inactivated
through deletions8 and truncating mutations8,9 in high-risk CLL

(Extended Data Fig. 4). A gene set enrichment analysis of matched
RNA-seq data revealed downregulation of genes that are suppressed
upon MYC activation in B cells10 (Supplementary Table 4). In addi-
tion to MGA, we report two additional candidate driver genes that
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Figure 1 | The landscape of putative driver gene
mutations and recurrent somatic copy number
variations in CLL. Somatic mutation information
is shown across the 55 putative driver genes and
recurrent somatic copy number alterations (rows)
for 538 primary patient samples (from CLL8
(green), Spanish ICGC (red) and DFCI/Broad
(blue)) that underwent WES (columns). Blue labels,
recurrent somatic CNAs; bold labels, putative CLL
cancer genes previously identified in ref. 3;
asterisked labels, additional cancer-associated genes
identified in this study. Samples were annotated for
IGHV status (black, mutated; white unmutated; red,
unknown), and for exposure to therapy before
sampling (black, previous therapy; white, no
previous therapy; red, unknown previous treatment
status).
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probably modulate MYC activity (PTPN11 (ref. 11) (n 5 7, 1.3%) and
FUBP1 (ref. 12) (n 5 9, 1.7%)), highlighting MYC-related proteins as
drivers of CLL.

Another cellular process affected by novel CLL drivers is the
MAPK–ERK pathway, with 8.7% of patients harbouring at least one
mutation in CLL genes in this pathway. These included mutations in
RAS genes (NRAS, n 5 9 and KRAS, n 5 14, totalling 4.1%); BRAF
(n 5 21, 3.7%); or the novel putative driver MAP2K1 (n 5 12, 2%).
This finding suggests that further therapeutic exploration of MAPK–
ERK pathway inhibitors in CLL would be beneficial. Notably, BRAF
mutations in CLL did not involve the canonical hotspot (V600E) seen
in other malignancies5,13,14, but rather clustered heavily around the
activation segment of the kinase domain (Fig. 2). This may be indi-
cative of a different mechanism of activity15,16, and has clinical
implications, as BRAF inhibitors are thought to be less effective for
non-canonical BRAF mutations17,18.

In addition to highlighting novel cellular processes and pathways
affected in CLL, many of the 26 additional CLL genes more densely
annotated pathways or functional categories previously identified in
CLL19, including RNA processing and export (FUBP1, XPO4, EWSR1
and NXF1), DNA damage (CHEK2, BRCC3, ELF4 (ref. 20) and
DYRK1A (ref. 21)), chromatin modification (ASXL1, HIST1H1B,
BAZ2B and IKZF3) and B-cell-activity-related pathways (TRAF2,
TRAF3 and CARD11).

We discovered a number of putative CLL drivers previously unre-
cognized in human cancer. In a first example, we found that RPS15
was recurrently mutated (n 5 23, 4.3%), with mutations localized to
the carboxy-terminal region (Fig. 2) at highly conserved sites (median
conservation score of 94 out of 100). This component of the S40
ribosomal subunit has not been extensively studied in cancer,
although rare mutations have been identified in Diamond–Blackfan
anaemia22. A gene set enrichment analysis revealed upregulation of
gene sets related to adverse outcome in CLL as well as immune res-
ponse gene sets (Supplementary Table 4). In another example of a
previously unrecognized cancer gene, we identified recurrent L162R
substitutions (n 5 11, 2.0%) in IKZF3, targeting a highly conserved
amino acid (93 out of 100 conservation score). This gene is a key
transcription factor in B-cell development23, and its upregulation
has been associated with adverse outcome24,25.

In addition to sSNVs and sIndels, we characterized somatic copy
number alterations (CNAs) directly from the WES data (Extended
Data Fig. 5 and Supplementary Tables 5 and 6). When we accounted
for all 55 identified driver events—including non-silent sSNVs and
sIndels in putative CLL genes (n 5 44), and recurrent somatic CNAs
(n 5 11)—91.1% of CLLs contained at least one driver. Moreover,
65.4% of CLLs now harboured at least 2 drivers, and 44.4% at least
3 drivers, compared with 55.9% and 31.8% were we to exclude the 26
additional CLL genes.

Drivers and CLL characteristics
The larger cohort size also provided statistical power to examine
associations between genetic alterations and key CLL features. First,
we examined whether mutations differed between IGHV mutated and
unmutated subtypes, the two main subtypes of CLL. In agreement with
the relative clinical aggressiveness of IGHV unmutated CLL, most
drivers were found in a higher proportion in this subtype (Extended
Data Fig. 6a). Only three driver genes were enriched in the IGHV
mutated CLL (del(13q), MYD88 and CHD2), suggesting a role for
these specific alterations within the oncogenic process of this subtype.

Second, since therapy could lead to selection of particular driver
events, we examined the 33 samples (6.2%, none enrolled on CLL8)
that had received therapy before sampling. Previous treatment was
associated with enrichment in TP53 and BIRC3 mutations del(17p)
and del(11q), as previously indicated26, as well as in mutated DDX3X
and MAP2K1, suggesting their selection by therapeutic interventions
(Extended Data Fig. 6b).

Third, we examined whether coherent patterns of co-occurrence of
driver events were evident, limiting our analysis to the 31 drivers with
.10 affected patients. Of 465 possible pairs, 11 combinations had
statistically significant high or low co-occurrence (Extended Data
Fig. 6c, d). As expected, a high degree of co-occurrence was found
between mutated TP53 and del(17p), and between mutated ATM and
del(11q). Both mutated ATM and del(11q) significantly co-occurred
with amp(2p), and associations between the presence of tri(12)
with mutated BIRC3 and with mutated BCOR were also found. A
significantly low rate of co-occurrence was seen between del(13q)
and tri(12).

Fourth, we examined the temporal sequence of driver acquisition in
the evolutionary history of CLL. To do this, we computed the cancer-
cell fraction (CCF) of each mutation across the 538 samples, and
identified mutations as either clonal or subclonal27 (58.1% of muta-
tions classified as subclonal). Both clonal and subclonal sSNVs were
similarly dominated by C . T transitions at CpG sites (Extended
Data Fig. 7).

We first classified driver events probably acquired earlier or later
in the disease course based on the proportion of cases in which the
driver was found as clonal (Fig. 3a). This large data set further
enabled the inference of temporal relationships between pairs of
drivers. We systematically identified instances in which a clonal
driver was found together with a subclonal driver within the same
sample, as these pairs reflect the acquisition of one lesion (clonal)
followed by another (subclonal), providing a temporal ‘edge’ leading
from the former to the latter28,29. For each driver, we calculated the
relative enrichment of out-going edges compared to in-going edges
to define early, late and intermediary drivers (Supplementary Table
7). For 23 pairs connected by at least 5 edges, we further established
the temporal relationship between the two drivers in each pair, and
thereby constructed a temporal map of the evolutionary trajectories
of CLL (Supplementary Table 8 and Fig. 3b). This network high-
lights somatic CNAs as the earliest events with two distinct points of
departure involving del(13q) and tri(12). It further demonstrates an
early convergence towards del(11q) and substantial diversity in late
drivers. Finally, this analysis suggests that in the case of the tumour
suppressor genes ATM and BIRC3, copy loss precedes sSNVs and
sIndels in biallelic inactivation.

Impact on clinical outcome
We examined whether the presence of any of the drivers detected in at
least 10 of the 278 pre-treatment CLL8 samples was associated with
impact on clinical outcome (Fig. 4a and Extended Data Figs 8 and 9;
the genomics analysis team was blinded to the clinical outcome data).
Previous investigations suggested an impact for 7 CLL genes (SF3B1,
ATM, TP53, XPO1, EGR2, POT1 and BIRC3)30–33. We found shorter
progression-free survival (PFS) associated only with TP53 and SF3B1
mutations. Of the newly identified recurrent lesions evaluated (MGA,
BRAF and RPS15), we observed a shorter PFS with mutated RPS15
(Bonferroni P 5 0.024).

The presence of a detectable pre-treatment subclonal driver has
been previously associated with shorter remissions in patients treated
with heterogeneous therapies3. In the CLL8 cohort, we again found
that the presence of a pre-treatment subclonal driver was associated
with a significantly shorter PFS (hazard ratio (HR) 1.6 (95% confid-
ence interval (CI) 1.2–2.2), P 5 0.004). This association remained
significant in both the FC (fludarabine and cyclophosphamide) and
FCR (fludarabine, cyclophosphamide and rituximab) treatment arms
(Fig. 4b), with a non-significant trend when IGHV mutation status
was added to a multivariable model in addition to the treatment arm
(1.3 (0.9–1.9), P 5 0.102).

Clonal evolution at disease relapse
To define clonal evolution in disease relapse, we performed WES on
matched samples collected at the time of relapse from 59 of 278 CLL8
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subjects (Supplementary Tables 9 and 10). We observed large clonal
shifts between pre-treatment and relapse samples in the majority of
cases (57 of 59), thus demonstrating that CLL evolution after therapy
is the rule rather than the exception (Fig. 5a). The relapse clone was
already detectable in pre-treatment WES in 18 of 59 (30%) cases,
demonstrating that the study of pre-treatment diversity anticipates
the future evolutionary trajectories of the relapsed disease34. By tar-
geted deep sequencing, we screened for relapse drivers in 11 of the 41
of pre-treatment samples in which WES did not detect the relapse
driver. In 7 of these 11 CLLs, at least one relapse driver was detected in
the pre-treatment sample (Supplementary Table 10).

We further compared the pre-treatment and relapse CCF for each
driver, and observed three general patterns. First, tri(12), del(13q) and
del(11q), suggested as early drivers (Fig. 3b), tended to remain stably
clonal despite marked, often branched, evolution (Fig. 5b (CLL cases
GCLL-115 and GCLL-307), Fig. 5c, top row, and Extended Data
Fig. 10). This confirms that these are indeed early events probably
shared by the entire malignant population. Second, TP53 mutations
and del(17p) demonstrated increases in CCF upon relapse, suggesting

a fitness advantage under therapeutic selection (Fig. 5b (GCLL-27)
and Fig. 5c, middle row). The novel driver IKZF3 increased in CCF
in 3 of 4 relapse cases (and remained clonal in the fourth), supporting
the suggestion that these mutations probably enhance fitness.
Third, mutations in SF3B1 and ATM, identified as temporally inter-
mediate or late drivers, seemed just as likely to decline in CCF as they
were to increase (Fig. 5c, bottom row). These results suggest that
within this therapeutic context such mutations do not provide the
same strength of fitness advantage compared to TP53 disruption. In
addition, we observed nine instances each of multiple distinct alleles
of ATM and SF3B1 mutations within the same CLL (for example,
GCLL-307 in Fig. 5b), indicating convergent evolution of these late-
occurring CLL drivers.

This series also informs us regarding the mutagenesis of the tumour
suppressor genes TP53 and ATM, where biallelic inactivation is com-
mon. In the case of ATM, we typically find a fixed clonal del(11q22.3)
and subclones harbouring sSNVs affecting the other allele that shift in
CCF over time (for example, GCLL-307). We confirmed that the
breakpoints of somatic CNAs in matched relapse and pre-treatment
samples were highly consistent, probably representing the same dele-
tion event. These data suggest that mono-allelic ATM deletion pro-
vides a fitness advantage that enables the expansion of the malignant
population with subsequent growth of multiple co-existing clones
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that harbour a ‘second hit’ (genetic disruption of the remaining allele).
Thus, while a biallelic lesion is clearly selected for (Extended Data
Fig. 6c), the longitudinal data support the temporal analysis (Fig. 3b)
in which del(11q) precedes ATM mutations, reflecting the higher
likelihood of a focal copy number loss compared with a deleterious
point mutation35,36. In contrast, we consistently observed a concord-
ant rise of del(17p) and TP53 mutations in all 12 CLLs harbouring
both of these events, and none of these cases exhibited multiple dis-
tinctly evolving TP53 mutated clones. These observations suggest that
a true biallelic inactivation of TP53 is required, and indeed, across the
538 CLL samples, the odds ratio for co-occurrence of del(17p) and
TP53 mutation was far greater than the odds ratio for co-occurrence
of del(11q) and ATM mutation (97.22 versus 10.99, respectively).
These observations are in agreement with a recent analysis that
suggested that with the exception of a few genes such as TP53,
tumour suppressor genes in sporadic cancers are haploinsufficient
to begin with, and that the second hit only further builds on this
fitness advantage37.

Conclusions
This study of WES in CLL enabled a comprehensive identification of
putative cancer-associated genes in CLL, generating novel hypotheses
regarding the biology of this disease, and identifying previously unre-
cognized putative CLL drivers such as RPS15 and IKZF3. The detailed
characterization of the compendium of driver lesions in cancer is of

particular importance as we strive to develop personalized medicine,
because driver genes may inform prognosis (for example, RPS15
mutations) and identify lesions that may be targeted by therapeutic
intervention (for example, MAPK pathway mutations and specifically
the unexpected enrichment for non-canonical BRAF mutations).
Through the inclusion of samples collected within a landmark clinical
trial with mature outcome data, we could further study the impact of
genetic alterations in the context of the current standard-of-care
front-line therapy. As targeted therapy is rapidly transforming the
treatment algorithms for CLL, future studies will be required to re-
examine these associations in this context38.

An important benefit of the larger cohort size is the enhanced ability
to explore relationships between driver lesions based on patterns of
their co-occurrence. Focusing on temporal patterns of driver acquisi-
tion—based on the distinction between clonal versus subclonal altera-
tions in a cross-sectional analysis—we derived a temporal map for the
evolutionary history of CLL. In the context of relapse after first-line
fludarabine-based therapy, we note highly frequent clonal evolution,
and that the future evolutionary trajectories were already anticipated in
the pre-treatment sample in one-third of cases with WES.

This study provides an indication of the potential benefits to be
gained by applying novel genomic technologies to growing
cohort sizes across leukaemias: the continued discovery of novel can-
didate cancer genes, the deeper integration of genetic analysis with
standardized clinical information (collected within clinical trials) to
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Figure 5 | Matched pre-treatment and relapse
samples reveal patterns of clonal evolution in
relation to therapy. a, The number and
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inform prognosis and therapy, and the ability to delineate the complex
network of relationships between cancer drivers in the history and
progression of the malignant process.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.

Received 29 March; accepted 11 August 2015.

Published online 14 October 2015.

1. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing
factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genet. 44, 47–52
(2012).

2. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in
chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

3. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic
lymphocytic leukemia. Cell 152, 714–726 (2013).

4. Schuh, A. et al. Monitoring chronic lymphocytic leukemia progression by whole
genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120,
4191–4196 (2012).

5. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21
tumour types. Nature 505, 495–501 (2014).

6. Hallek, M. et al. Addition of rituximab to fludarabine and cyclophosphamide in
patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3
trial. Lancet 376, 1164–1174 (2010).

7. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new
cancer-associated genes. Nature 499, 214–218 (2013).

8. Edelmann, J. et al. High-resolution genomic profiling of chronic lymphocytic
leukemia reveals new recurrent genomic alterations. Blood 120, 4783–4794
(2012).

9. De Paoli, L. et al. MGA, a suppressor of MYC, is recurrently inactivated in high risk
chronic lymphocytic leukemia. Leuk. Lymphoma 54, 1087–1090 (2013).

10. Schlosser, I. et al. Dissection of transcriptional programmes in response to serum
and c-Myc in a human B-cell line. Oncogene 24, 520–524 (2005).

11. Jiang, X. et al. Critical role of SHP2 (PTPN11) signaling in germinal center-derived
lymphoma. Haematologica 99, 1834–1845 (2014).

12. Zhang, J. & Chen, Q. M. Far upstream element binding protein 1: a commander of
transcription, translation and beyond. Oncogene 32, 2907–2916 (2013).

13. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364,
2305–2315 (2011).

14. Brastianos, P. K. et al. Exome sequencing identifies BRAF mutations in papillary
craniopharyngiomas. Nature Genet. 46, 161–165 (2014).

15. Heidorn, S. J.et al. Kinase-dead BRAFandoncogenicRAS cooperate to drive tumor
progression through CRAF. Cell 140, 209–221 (2010).

16. Cancer Genome Atlas Research Network. Integrated genomic characterization of
papillary thyroid carcinoma. Cell 159, 676–690 (2014).

17. Yang, H. et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays
potent antitumor activity in preclinical melanoma models. Cancer Res. 70,
5518–5527 (2010).

18. Jebaraj, B. M. et al. BRAF mutations in chronic lymphocytic leukemia. Leuk.
Lymphoma 54, 1177–1182 (2013).

19. Landau, D. A. & Wu, C. J. Chronic lymphocytic leukemia: molecular heterogeneity
revealed by high-throughput genomics. Genome Med. 5, 47 (2013).

20. Sashida, G. et al. ELF4/MEF activates MDM2 expression and blocks oncogene-
induced p16 activation to promote transformation. Mol. Cell. Biol. 29, 3687–3699
(2009).

21. Park, J. et al. Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic
neuronal cells. J. Biol. Chem. 285, 31895–31906 (2010).

22. Gazda,H.T.et al. RibosomalproteinL5andL11mutationsareassociatedwithcleft
palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am. J. Hum.
Genet. 83, 769–780 (2008).

23. Ferreiros-Vidal, I. et al. Genome-wide identification of Ikaros targets elucidates its
contribution to mouse B-cell lineage specification and pre-B-cell differentiation.
Blood 121, 1769–1782 (2013).

24. Billot, K. et al.Deregulation ofAiolos expression in chronic lymphocytic leukemia is
associated with epigenetic modifications. Blood 117, 1917–1927 (2011).

25. Nückel, H. et al. The IKZF3 (Aiolos) transcription factor is highly upregulated and
inversely correlated with clinical progression in chronic lymphocytic leukaemia.
Br. J. Haematol. 144, 268–270 (2009).
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